evaluate(run_id=None, dataset_loc=None, results_fp=None)
Evaluate on the holdout dataset.
Parameters: |
|
---|
Returns: |
|
---|
madewithml/evaluate.py
@app.command()
def evaluate(
run_id: Annotated[str, typer.Option(help="id of the specific run to load from")] = None,
dataset_loc: Annotated[str, typer.Option(help="dataset (with labels) to evaluate on")] = None,
results_fp: Annotated[str, typer.Option(help="location to save evaluation results to")] = None,
) -> Dict: # pragma: no cover, eval workload
"""Evaluate on the holdout dataset.
Args:
run_id (str): id of the specific run to load from. Defaults to None.
dataset_loc (str): dataset (with labels) to evaluate on.
results_fp (str, optional): location to save evaluation results to. Defaults to None.
Returns:
Dict: model's performance metrics on the dataset.
"""
# Load
ds = ray.data.read_csv(dataset_loc)
best_checkpoint = predict.get_best_checkpoint(run_id=run_id)
predictor = TorchPredictor.from_checkpoint(best_checkpoint)
# y_true
preprocessor = predictor.get_preprocessor()
y_true = utils.get_col(preprocessor.transform(ds), col="targets")
# y_pred
z = predictor.predict(data=ds.to_pandas())["predictions"]
y_pred = np.stack(z).argmax(1)
# Metrics
metrics = {
"timestamp": datetime.datetime.now().strftime("%B %d, %Y %I:%M:%S %p"),
"run_id": run_id,
"overall": get_overall_metrics(y_true=y_true, y_pred=y_pred),
"per_class": get_per_class_metrics(y_true=y_true, y_pred=y_pred, class_to_index=preprocessor.class_to_index),
"slices": get_slice_metrics(y_true=y_true, y_pred=y_pred, ds=ds),
}
logger.info(json.dumps(metrics, indent=2))
if results_fp: # pragma: no cover, saving results
utils.save_dict(d=metrics, path=results_fp)
return metrics
get_overall_metrics(y_true, y_pred)
Get overall performance metrics.
Parameters: |
|
---|
Returns: |
|
---|
madewithml/evaluate.py
def get_overall_metrics(y_true: np.ndarray, y_pred: np.ndarray) -> Dict: # pragma: no cover, eval workload
"""Get overall performance metrics.
Args:
y_true (np.ndarray): ground truth labels.
y_pred (np.ndarray): predicted labels.
Returns:
Dict: overall metrics.
"""
metrics = precision_recall_fscore_support(y_true, y_pred, average="weighted")
overall_metrics = {
"precision": metrics[0],
"recall": metrics[1],
"f1": metrics[2],
"num_samples": np.float64(len(y_true)),
}
return overall_metrics
get_per_class_metrics(y_true, y_pred, class_to_index)
Get per class performance metrics.
Parameters: |
|
---|
Returns: |
|
---|
madewithml/evaluate.py
def get_per_class_metrics(y_true: np.ndarray, y_pred: np.ndarray, class_to_index: Dict) -> Dict: # pragma: no cover, eval workload
"""Get per class performance metrics.
Args:
y_true (np.ndarray): ground truth labels.
y_pred (np.ndarray): predicted labels.
class_to_index (Dict): dictionary mapping class to index.
Returns:
Dict: per class metrics.
"""
per_class_metrics = {}
metrics = precision_recall_fscore_support(y_true, y_pred, average=None)
for i, _class in enumerate(class_to_index):
per_class_metrics[_class] = {
"precision": metrics[0][i],
"recall": metrics[1][i],
"f1": metrics[2][i],
"num_samples": np.float64(metrics[3][i]),
}
sorted_per_class_metrics = OrderedDict(sorted(per_class_metrics.items(), key=lambda tag: tag[1]["f1"], reverse=True))
return sorted_per_class_metrics
get_slice_metrics(y_true, y_pred, ds)
Get performance metrics for slices.
Parameters: |
|
---|
Returns: |
|
---|
madewithml/evaluate.py
def get_slice_metrics(y_true: np.ndarray, y_pred: np.ndarray, ds: Dataset) -> Dict: # pragma: no cover, eval workload
"""Get performance metrics for slices.
Args:
y_true (np.ndarray): ground truth labels.
y_pred (np.ndarray): predicted labels.
ds (Dataset): Ray dataset with labels.
preprocessor (Preprocessor): Ray preprocessor.
Returns:
Dict: performance metrics for slices.
"""
slice_metrics = {}
df = ds.to_pandas()
df["text"] = df["title"] + " " + df["description"]
slices = PandasSFApplier([nlp_llm, short_text]).apply(df)
for slice_name in slices.dtype.names:
mask = slices[slice_name].astype(bool)
if sum(mask):
metrics = precision_recall_fscore_support(y_true[mask], y_pred[mask], average="micro")
slice_metrics[slice_name] = {}
slice_metrics[slice_name]["precision"] = metrics[0]
slice_metrics[slice_name]["recall"] = metrics[1]
slice_metrics[slice_name]["f1"] = metrics[2]
slice_metrics[slice_name]["num_samples"] = len(y_true[mask])
return slice_metrics
nlp_llm(x)
NLP projects that use LLMs.
madewithml/evaluate.py
@slicing_function()
def nlp_llm(x): # pragma: no cover, eval workload
"""NLP projects that use LLMs."""
nlp_project = "natural-language-processing" in x.tag
llm_terms = ["transformer", "llm", "bert"]
llm_project = any(s.lower() in x.text.lower() for s in llm_terms)
return nlp_project and llm_project
short_text(x)
Projects with short titles and descriptions.
madewithml/evaluate.py
@slicing_function()
def short_text(x): # pragma: no cover, eval workload
"""Projects with short titles and descriptions."""
return len(x.text.split()) < 8 # less than 8 words