eval_step(ds, batch_size, model, num_classes, loss_fn)
Eval step.
Parameters: |
|
---|
Returns: |
|
---|
madewithml/train.py
def eval_step(
ds: Dataset, batch_size: int, model: nn.Module, num_classes: int, loss_fn: torch.nn.modules.loss._WeightedLoss
) -> Tuple[float, np.array, np.array]: # pragma: no cover, tested via train workload
"""Eval step.
Args:
ds (Dataset): dataset to iterate batches from.
batch_size (int): size of each batch.
model (nn.Module): model to train.
num_classes (int): number of classes.
loss_fn (torch.nn.loss._WeightedLoss): loss function to use between labels and predictions.
Returns:
Tuple[float, np.array, np.array]: cumulative loss, ground truths and predictions.
"""
model.eval()
loss = 0.0
y_trues, y_preds = [], []
ds_generator = ds.iter_torch_batches(batch_size=batch_size, collate_fn=utils.collate_fn)
with torch.inference_mode():
for i, batch in enumerate(ds_generator):
z = model(batch)
targets = F.one_hot(batch["targets"], num_classes=num_classes).float() # one-hot (for loss_fn)
J = loss_fn(z, targets).item()
loss += (J - loss) / (i + 1)
y_trues.extend(batch["targets"].cpu().numpy())
y_preds.extend(torch.argmax(z, dim=1).cpu().numpy())
return loss, np.vstack(y_trues), np.vstack(y_preds)
train_loop_per_worker(config)
Training loop that each worker will execute.
Parameters: |
|
---|
madewithml/train.py
def train_loop_per_worker(config: dict) -> None: # pragma: no cover, tested via train workload
"""Training loop that each worker will execute.
Args:
config (dict): arguments to use for training.
"""
# Hyperparameters
dropout_p = config["dropout_p"]
lr = config["lr"]
lr_factor = config["lr_factor"]
lr_patience = config["lr_patience"]
batch_size = config["batch_size"]
num_epochs = config["num_epochs"]
num_classes = config["num_classes"]
# Get datasets
utils.set_seeds()
train_ds = session.get_dataset_shard("train")
val_ds = session.get_dataset_shard("val")
# Model
llm = BertModel.from_pretrained("allenai/scibert_scivocab_uncased", return_dict=False)
model = models.FinetunedLLM(llm=llm, dropout_p=dropout_p, embedding_dim=llm.config.hidden_size, num_classes=num_classes)
model = train.torch.prepare_model(model)
# Training components
loss_fn = nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode="min", factor=lr_factor, patience=lr_patience)
# Training
batch_size_per_worker = batch_size // session.get_world_size()
for epoch in range(num_epochs):
# Step
train_loss = train_step(train_ds, batch_size_per_worker, model, num_classes, loss_fn, optimizer)
val_loss, _, _ = eval_step(val_ds, batch_size_per_worker, model, num_classes, loss_fn)
scheduler.step(val_loss)
# Checkpoint
metrics = dict(epoch=epoch, lr=optimizer.param_groups[0]["lr"], train_loss=train_loss, val_loss=val_loss)
checkpoint = TorchCheckpoint.from_model(model=model)
session.report(metrics, checkpoint=checkpoint)
train_model(experiment_name=None, dataset_loc=None, train_loop_config=None, num_workers=1, cpu_per_worker=1, gpu_per_worker=0, num_samples=None, num_epochs=1, batch_size=256, results_fp=None)
Main train function to train our model as a distributed workload.
Parameters: |
|
---|
Returns: |
|
---|
madewithml/train.py
@app.command()
def train_model(
experiment_name: Annotated[str, typer.Option(help="name of the experiment for this training workload.")] = None,
dataset_loc: Annotated[str, typer.Option(help="location of the dataset.")] = None,
train_loop_config: Annotated[str, typer.Option(help="arguments to use for training.")] = None,
num_workers: Annotated[int, typer.Option(help="number of workers to use for training.")] = 1,
cpu_per_worker: Annotated[int, typer.Option(help="number of CPUs to use per worker.")] = 1,
gpu_per_worker: Annotated[int, typer.Option(help="number of GPUs to use per worker.")] = 0,
num_samples: Annotated[int, typer.Option(help="number of samples to use from dataset.")] = None,
num_epochs: Annotated[int, typer.Option(help="number of epochs to train for.")] = 1,
batch_size: Annotated[int, typer.Option(help="number of samples per batch.")] = 256,
results_fp: Annotated[str, typer.Option(help="filepath to save results to.")] = None,
) -> ray.air.result.Result:
"""Main train function to train our model as a distributed workload.
Args:
experiment_name (str): name of the experiment for this training workload.
dataset_loc (str): location of the dataset.
train_loop_config (str): arguments to use for training.
num_workers (int, optional): number of workers to use for training. Defaults to 1.
cpu_per_worker (int, optional): number of CPUs to use per worker. Defaults to 1.
gpu_per_worker (int, optional): number of GPUs to use per worker. Defaults to 0.
num_samples (int, optional): number of samples to use from dataset.
If this is passed in, it will override the config. Defaults to None.
num_epochs (int, optional): number of epochs to train for.
If this is passed in, it will override the config. Defaults to None.
batch_size (int, optional): number of samples per batch.
If this is passed in, it will override the config. Defaults to None.
results_fp (str, optional): filepath to save results to. Defaults to None.
Returns:
ray.air.result.Result: training results.
"""
# Set up
train_loop_config = json.loads(train_loop_config)
train_loop_config["num_samples"] = num_samples
train_loop_config["num_epochs"] = num_epochs
train_loop_config["batch_size"] = batch_size
# Scaling config
scaling_config = ScalingConfig(
num_workers=num_workers,
use_gpu=bool(gpu_per_worker),
resources_per_worker={"CPU": cpu_per_worker, "GPU": gpu_per_worker},
_max_cpu_fraction_per_node=0.8,
)
# Checkpoint config
checkpoint_config = CheckpointConfig(
num_to_keep=1,
checkpoint_score_attribute="val_loss",
checkpoint_score_order="min",
)
# MLflow callback
mlflow_callback = MLflowLoggerCallback(
tracking_uri=MLFLOW_TRACKING_URI,
experiment_name=experiment_name,
save_artifact=True,
)
# Run config
run_config = RunConfig(
callbacks=[mlflow_callback],
checkpoint_config=checkpoint_config,
)
# Dataset
ds = data.load_data(dataset_loc=dataset_loc, num_samples=train_loop_config["num_samples"])
train_ds, val_ds = data.stratify_split(ds, stratify="tag", test_size=0.2)
tags = train_ds.unique(column="tag")
train_loop_config["num_classes"] = len(tags)
# Dataset config
dataset_config = {
"train": DatasetConfig(fit=False, transform=False, randomize_block_order=False),
"val": DatasetConfig(fit=False, transform=False, randomize_block_order=False),
}
# Preprocess
preprocessor = data.CustomPreprocessor()
train_ds = preprocessor.fit_transform(train_ds)
val_ds = preprocessor.transform(val_ds)
train_ds = train_ds.materialize()
val_ds = val_ds.materialize()
# Trainer
trainer = TorchTrainer(
train_loop_per_worker=train_loop_per_worker,
train_loop_config=train_loop_config,
scaling_config=scaling_config,
run_config=run_config,
datasets={"train": train_ds, "val": val_ds},
dataset_config=dataset_config,
preprocessor=preprocessor,
)
# Train
results = trainer.fit()
d = {
"timestamp": datetime.datetime.now().strftime("%B %d, %Y %I:%M:%S %p"),
"run_id": utils.get_run_id(experiment_name=experiment_name, trial_id=results.metrics["trial_id"]),
"params": results.config["train_loop_config"],
"metrics": utils.dict_to_list(results.metrics_dataframe.to_dict(), keys=["epoch", "train_loss", "val_loss"]),
}
logger.info(json.dumps(d, indent=2))
if results_fp: # pragma: no cover, saving results
utils.save_dict(d, results_fp)
return results
train_step(ds, batch_size, model, num_classes, loss_fn, optimizer)
Train step.
Parameters: |
|
---|
Returns: |
|
---|
madewithml/train.py
def train_step(
ds: Dataset,
batch_size: int,
model: nn.Module,
num_classes: int,
loss_fn: torch.nn.modules.loss._WeightedLoss,
optimizer: torch.optim.Optimizer,
) -> float: # pragma: no cover, tested via train workload
"""Train step.
Args:
ds (Dataset): dataset to iterate batches from.
batch_size (int): size of each batch.
model (nn.Module): model to train.
num_classes (int): number of classes.
loss_fn (torch.nn.loss._WeightedLoss): loss function to use between labels and predictions.
optimizer (torch.optimizer.Optimizer): optimizer to use for updating the model's weights.
Returns:
float: cumulative loss for the dataset.
"""
model.train()
loss = 0.0
ds_generator = ds.iter_torch_batches(batch_size=batch_size, collate_fn=utils.collate_fn)
for i, batch in enumerate(ds_generator):
optimizer.zero_grad() # reset gradients
z = model(batch) # forward pass
targets = F.one_hot(batch["targets"], num_classes=num_classes).float() # one-hot (for loss_fn)
J = loss_fn(z, targets) # define loss
J.backward() # backward pass
optimizer.step() # update weights
loss += (J.detach().item() - loss) / (i + 1) # cumulative loss
return loss